ИНН/КПП 7204192705/720301001 <u>www.averus-pribor.ru</u>

Телефон: 8-800-551-11-01 e-mail: info@averus-pribor.ru

Измеритель RLC AMM-3320

Измеритель RLC AMM-3320

Высокопроизводительный портативный RLC-метр AMM-3320 - это компактный и удобный прибор, позволяющий быстро и точно производить измерения параметров компонентов.

Области применения:

- Выборочный контроль качества на производственной линии
- Тестирование компонентов в ремонтных мастерских и сервисных службах
- Сортировка и отбор компонентов по параметрам
- Входной контроль при приёмке партии (особенно в полевых условиях)
- Лабораторные исследования параметров при разработке и тестировании

Отличительные особенности:

- Базовая погрешность 0,3%
- Двухстрочный ЖК дисплей 19999 / 1999 отсчетов с подсветкой
- Разрешение 0,01%
- Аналоговая шкала для контроля быстрых изменений
- Максимальная тестовая частота до 100 кГц
- 4-х проводная схема измерений
- Встроенный компаратор с функцией сортировщика
- Режим автоматического определения и измерения компонентов
- Функция удержания показаний
- Режим относительных измерений
- Mini-USB интерфейс для подключения к ПК и обработки данных
- Автоматическое отключение

Технические характеристики RLC метр AMM-3320:

Функции					
	Первичные: Ls / Cs - индуктивность и емкость (последовательная схема замещения) Lp / Cp - индуктивность и емкость (параллельная схема замещения) DCR: сопротивление на постоянном токе				
Измеряемые параметры	Вторичные: О - фазовый угол D - тангенс угла потерь Q -добротность ESR - сопротивление (последовательная схема замещения) Rp - сопротивление (параллельная схема замещения)				
Тестовая частота	100 Гц/ 120 Гц/ 1 кГц /10 кГц/ 100 кГц				
Диапазоны измерений		100 Гц/ 120 Гц	20 мГн20 кГн		
	Индуктивность	1 кГц	2000 мкГн2000 Гн		
		10 кГц	200 мкГн20 Гн		
		100 кГц	20 мкГн200 мГн		
		100 Гц/ 120 Гц	20 нФ20 мФ		
	Емкость	1 кГц	2000 пФ2 мФ		
		10 кГц	200 пФ200 мкФ		
		100 кГц	200 пФ20 мкФ		
	Сопротивление	100 Гц / 120 Гц	200 Ом200 МОм		

1 кГц	20 Ом200 МОм		
10 кГц	20 Ом20 МОм		
100 кГц	20 Ом2 МОм		
Сопротивление постоянному току	200 Ом200 МОм		
Тангенс угла потерь / Добротность	0,0011999		
Фазовый угол	0,00°±180°		
Эквивалентные схемы замещения	Последовательная и параллельная		
Уровень тестового напряжения	0,6 Вскз		
Выбор диапазона	Автоматический и ручной		
Скорость измерений	1,2 изм/с		
Калибровка	Короткозамкнутая, Открытая		
Режим допусков	±0,25% / ±0,5% /±1% /±2% /±5% /±10% /±20% /±80%-20%		
Интерфейс	Mini-USB (виртуальный последовательный порт)		
Тип батарей	9 В ,6 батарей типа ААА		
Автоотключение питания	5 мин		
Габаритные размеры	203,2х101,6х50,8 мм		
Масса	567 г		

Погрешность измерения импеданса (при D<0.1)

Частота сигнала	Диапазон измерения импеданса							
	0,11 Ом	110 Ом	0,01100кОм	0,11 МОм	120 МОм	20200 МОм		
DCR						200/ . 54		
100/120 Гц	1.0 % + 5 е.м.р.	0.5 % + 3 е.м.р.	0.3 % + 2 е.м.р.	0.5 % + 3 е.м.р.	1.0 % + 5 е.м.р.	2.0 % + 5d		
1 кГц						5.0 % + 5d		
10 кГц					2.0 % + 5 е.м.р.	не нормировано		
100 кГц	2.0 % + 5	1.0 % + 5	0.5 % + 3	1.0 % + 5	2.0 % + 5 е.м.р. (12 МОм)			
	е.м.р.	е.м.р.	е.м.р.	е.м.р.				

Измерение RLC. Эквивалентный режим

Из-за неидеальности и распределённых параметров реальные элементы можно представлять как набор идеальных элементов, соединённых между собой в определённой последовательности. Обычно используются две простые эквивалентные модели (режимы): последовательная и параллельная.

Выбор подходящего эквивалентного режима может улучшить результат измерения. В целом, последовательный режим больше подходит для элементов с низким импедансом (<100~Om), а параллельный режим — для элементов с высоким импедансом (>10~kOm). Для элементов с импедансом между двумя этими значениями эквивалентный режим не оказывает большого влияния на результат измерения.

В современных измерителях RLC эквивалентный режим выбирается автоматически. Причем для элементов с низким импедансом (<10 кОм) выбирается последовательный режим, что отображается на дисплее (например, Ls/Cs/Rs), а для элементов с высоким импедансом (>10 кОм) выбирается параллельный режим и на дисплее отображается, например, Lp/Cp/Rp. В большинстве приборов эквивалентный режим можно выбрать вручную.

На данное оборудование предоставляется скидка, подробности уточняйте у менеджера. 8-800-551-11-01