ИНН/КПП 7204192705/720301001 www.averus-pribor.ru

Телефон: 8-800-551-11-01 e-mail: info@averus-pribor.ru

GE Sensing DigitalFlow GF868

GE Sensing DigitalFlow GF868

Области применения

Расходомер GF868 серии DigitalFlow - это полностью укомплектованная ультразвуковая система измерения расхода газов, предназначенная для следующего применения:

- Факельные газы
 - о Отслеживание и предотвращение потерь от протечек с одновременной идентификацией вещества
 - Расчет общего материального баланса предприятия
 - Снижение стоимости затрат на использование пара с соответствующим его регулированием
 - Экономия энергии за счет исключения излишне- го сжигания газов
 - Контроль выбросов в окружающую среду в соответствии с государственными законами

• Отходящие газы

Достоинства

- Измерение скорости, объемного и массового рас- хода
- Новый стандартный диапазон скорости потока газа до 100 м/с
- Новый расширенный диапазон скорости потока газа до 120 м/с *
- Измерение мгновенных значений среднего молеку- лярного веса
- Измерение расхода углеводородных газов
- Минимальное техническое обслуживание благодаря отсутствию движущихся деталей, отверстий или импульсных трубок, а также незначительная чувствительность к загрязнению и влажности
- Высокая точность измерения расхода вне зависи- мости от состава газа
- Измерение скорости потока газа от очень низкой до очень высокой
- Технология монтажа, испытанная в производствен- ных условиях
- Встроенные сумматоры
- Встроенный источник питания для датчиков давления и температуры
- Широкой диапазон измерения скорости потока газа 3490:1
- Одно- и двухканальные/двухлучевые конфигурации * Максимальная скорость может быть выше в специ- альных установках консультируйтесь в компании GE

Массовый расходомер факельного газа

Ультразвуковой расходомер GF868 серии DigitalFlow реали- зует запатентованную корреляционную времяимпульсную технологию измерения Correlation Transit-Time, цифровую обработку сигналов и точный метод расчета молекулярного веса. Дополнительно к этому, ему присущи известные достоинства ультразвукового способа измерения – надежность, не требующая регулярного технического обслужива- ния, высокая точность, быстродействие, широкий диапазон измерений – GF868 прекрасный выбор для применений, связанных со сжиганием газов в факеле.

Корреляционная времяимпульсная технология - идеальна для измерений расхода факельного газа

Корреляционная времяимпульсная (Correlation Transit-Time) технология измерения имеет явные преимущества перед другими методами измерения расхода факельного газа и позволяет преодолеть множество трудностей при решении таких задач. Обычно, газ, поступающий на факел через соот- ветствующую трубопроводную систему, является смесью компонентов из различных источников. Расход газа в таких системах, как правило, изменяется в широких пределах или может быть даже двунаправленным. Пульсации давления, вариации состава и температуры, резкие изменения пара- метров окружающей среды, а также большой диапазон изменения расхода, еще более осложняют эти измерения. Расходомер GF868 разработан специально для обеспечения высокой работоспособности в этих условиях.

Запатентованный метод измерения молекулярного веса

В расходомере GF868 используется запатентованный метод расчета среднего молекулярного веса углеводородных газо- вых смесей. Этот оригинальный алгоритм позволяет расши- рить диапазон определения молекулярного веса при одно- временном увеличении точности и расширении возможности компенсации для газов, не содержащих углеводороды. Минимальная погрешность измерения массового расхода и более точное определение состава факельного газа позволят увеличить эффективность работы предприятий, обеспечивая корректное управление инжекцией пара в факельную насадку, оперативную диагностику протечек в поток факельного газа и точность материального баланса.

Лучшая технология для факельного газа

Ультразвуковой метод измерения – это идеальная технология для применений, связанных со сжиганием газов в факеле, она не зависит от свойств газа и при ее реализации не создается никаких помех движению потока. Ультразвуковые преобразо- ватели, выполненные полностью из металла и установленные на трубе, посылают ультразвуковые импульсы вверх и вниз по течению через поток газа. По разности времен прохождения ультразвуковых импульсов между преобразователями, уста- новленными ниже и выше по потоку, компьютер, встроенный в расходомер GF868, используя методы цифровой обработки в сочетании с современными способами кодирования и кор- реляционного детектирования сигнала, рассчитывает скорость, объемный и массовый расходы факельного газа. Сигналы от датчиков давления и температуры позволяют также рассчитать объемный расход, приведенный к нормаль- ным условиям. Для обеспечения максимальной точности используется двухканальная модель GF868, которая может быть установлена для двухлучевого измерения расхода в одном месте трубопровода. Двухканальная модель может также применяться для измерения расхода в двух различных трубах или в двух различных точках одной трубы.

Простота монтажа и установки

Система для измерения расхода состоит из двух ультразвуко- вых преобразователей для каждого измерительного канала, предусилителей и электронного блока. Ультразвуковые преобразователи могут быть установлены в измерительный участок или, непосредственно, в технологическую линию, используя процедуру "горячей или холодной врезки". Электронный блок GF868 может быть установлен на расстоянии до 300 м от ультразвуковых преобразователей.

Один прибор - широкий диапазон измерения в различных условиях эксплуатации

Высокий расход

Расходомер GF868 серии DigitalFlow реализует новый стан- дартный динамический диапазон по скорости 3280:1 и новый расширенный динамический диапазон измерения скорости 3940:1. Он позволяет измерять скорость потока от 0,03 до 100 м/с – стандартный диапазон в

обоих направлениях дви- жения потока, а версия с расширенным диапазоном измере- ния – до 120 м/с в одном направлении, в стационарном или быстро изменяющемся потоке в трубах диаметром от 2 до 120 дюймов (от 76 мм до 3 м). В пределах рабочего диапазо- на один расходомер DigitalFlow GF868 обеспечивает измере- ние расхода в большинстве возможных условий, которые могут иметь место в технологических линиях факельного газа. Расширение диапазона измерения скорости до 100 м/с в стандартных приборах реализовано без потери точности.

Низкий расход

В базовом режиме объемный расход в факельных системах часто соответствует скорости потока в пределах от 0,03 до 0,3 м/с. Расходомер факельного газа обеспечивает высокую точность измерения, как в этом диапазоне, так и при боль- шой скорости в условиях сбоев в факельной системе или сбросе газа. Дополнительные лучи, более длинные ходы акустических лучей, нестандартные конфигурации и направ- ление этих ходов используются для получения точных из- мерений при низких расходах. Комбинация двух способов установки с использованием двухканального прибора по- зволяет измерять низкие расходы – диагональная установка ультразвуковых преобразователей 45 и высокие расходы – установка по хорде со скосом 90. Диагональная установка под углом 45 обеспечивает большую длину хода луча и позволяет измерять низкую скорость с высокой точностью, а установка по хорде со скосом 90 – большие расходы.

Идентификация источников протечек, снижение расхода пара и улучшение материального баланса предприятия

Утечки и перерасход пара - две основные причины потерь продукта и энергии. Их снижение немедленно приведет к увеличению общей эффективности работы предприятия. Окупаемость полной установки расходомера GF868 - дело нескольких месяцев. Дальнейшая эксплуатация GF868 при- ведет к еще более существенной экономии энергии и уменьшению потерь продукта. Компьютер, встроенный в GF868, использует сигналы от датчиков температуры и давления, а также предварительно измеренную величину скорости звука в газе, для расчета мгновенного значения среднего молекулярного веса газа. Эти параметры помогают идентифицировать источники протечек в трубопроводной системе факельного газа. Даже очень небольшое увеличение расхода в системе может ука- зать на причину утечки, например на неполную герметич- ность предохранительного клапана. Изменение среднего молекулярного веса газа может быть использовано для локализации источника протечки. Быстрая идентификация и исключение причин протечек позволяет значительно сокра- тить потери энергии и продукта. Величина массового расхода может быть использована для расчета массового баланса и контроля инжекции пара в факельную насадку. Точное определение расхода и среднего молекулярного веса газа, поступающего на факел, позволяет осуществлять корректное регулирование подачи пара в факельную насадку. При этом может быть снижен расход пара с одновременным уменьшением вредных выбросов в соответ- ствии с нормативными документами по охране окружающей среды.

GF868 разработан для эксплуатации в сложных условиях факельных систем

GF868 не имеет движущихся деталей, которые подвержены загрязнению и износу. Его запатентованные ультразвуковые преобразователи не создают помех движению потока, изго- товлены из титана и других металлов, которые не подвер- жены коррозии из-за воздействия окружающей среды, обычно имеющей место в таких применениях, и могут эксплуатироваться в опасных зонах. Широкий динамический диапазон позволяет измерять скорость газа в пределах от 0,03 до 120 м/с. В отличие от тепловых расходомеров, показания приборов, реализующих ультразвуковой время- импульсный метод измерения расхода, не зависят от коэф- фициента теплопередачи факельного газа, а сами приборы не требуют регулярного технического обслуживания. Эти и другие уникальные особенности GF868 серии DigitalFlow выгодно отличают его от других типов расходомеров факельного газа.

Технические характеристики

Тип измеряемой среды

• Факельные и отходящие газы

Материалы труб

• Все металлы, стекловолокно. При использовании труб из других материалов консультируйтесь в компании GE

	Стандартный диапазон (100 м/с)		Расширенный диапазон (120 м/с)			
Размеры труб						
Установка – диагональная 45	От 2 до 14 дюймов (от 50 до 350 мм) NB ANSI		От 4 до 12 дюймов (от 100 до 300 мм) NB ANSI			
Установка – скос 90	От 16 до 120 дюймов (от 400 до 3000 мм) NB ANSI		От 14 до 120 дюймов (от 350 до 3000 мм) NB ANSI			
Погрешность измерения скорости газа						
Диапазон	От ±0.3 до ±100 м/с		От 0.3 до +120 м/с			
1 луч	±2-5%		±2-5%			
2 луча	±1.4-3.5%		±1.4-3.5%			
Диапазон	От 0.03 до ±0.3 м/с		От 0.03 до ±0.3 м/с			
1 луч	±0.004 м/c		±0.006 м/с			
2 луча	±0.003 м/c		±0.004 м/c			
Диапазон измерения (общий)	От -100 до 100 м/с (двунаправленный)		От 0.03 до 120 м/с (однонаправленный)			
Динамический диапазон (общий)	3280:1		3940:1			

Погрешность измерения молекулярного веса(углеводородные смеси)	От 2 до 120 г/моль	±1.8%	От 2 до 6 г/моль От 6 до 120 г/моль	±2- 10% ±1.8- 2%
Погрешность измерения массового расхода (см. Примечание 1) (углеводородные смеси)				
1 луч	От 3% до 7%		От 3% до 7%	
2 луча	От 2.4% до 5%		От 2.4% до 5%	

Примечание 1: Зависит от точности измерения темпе- ратуры и давления.

Воспроизводимость

1% от показаний при скорости потока от 30 см/с до 120 м/с Точность зависит от размера труб и способа измерения – 1 или 2-х лучевого. Погрешность до 0,5% от показаний может быть достигнута с индивидуальной калибровкой. Технические характеристики справедливы при полностью развитом профиле потока и наличии прямых участков трубопровода длиной 20 диаметров трубы и 10 диамет- ров трубы, соответственно, до места установки ультразвуковых преобразователей

Измеряемые параметры

Массовый расход; объемный расход, приведенный к нор- мальным условиям и действительный; суммарный расход и скорость потока.

На данное оборудование предоставляется скидка, подробности уточняйте у менеджера. 8-800-551-11-01