ИНН/КПП 7204192705/720301001 <u>www.averus-pribor.ru</u>

Телефон: 8-800-551-11-01 e-mail: <u>info@averus-pribor.ru</u>

PQM-711 Анализатор параметров качества электрической энергии

PQM-711 Анализатор параметров качества электрической энергии

Функциональные возможности:

- полное соответствие классу А;
- регистрация переходных процессов до 8 кВ (с частотой дискретизации до 10 МГц). Минимальная длительность переходного процесса 650 нс;
- регистрация сигналов управления;
- GPS модуль для синхронизации времени;
- GSM модуль и Wi-Fi модуль для обмена данными (настройки, управление, считывание данных);

- Настройка измерителя и анализ сохраненных данных осуществляется с помощью планшетного компьютера с адаптированным ПО;
- встроенный блок питания с широким диапазоном номинальных входных напряжений 90...760 В переменного или постоянного тока;
- работа от внутреннего аккумулятора при отключении питания;
- одновременная регистрация двух массивов данных (работа по стандарту и пользовательские настройки);
- степень защиты корпуса IP65;
- автоматическое формирование протоколов регистрации.

Измерение и регистрация:

- напряжения постоянного и переменного тока L1, L2, L3, N, PE (пять измерительных входов). Минимального, максимального, среднего и мгновенных значений напряжения. Возможно совместное использование с трансформаторами напряжения;
- силы постоянного и переменного тока L1, L2, L3, N (четыре измерительных входа). Минимального, максимального, среднего и мгновенных значений силы тока. Возможно совместное использование с трансформаторами тока. Диапазон измерения зависит от типа токоизмерительных клещей: гибкие клещи F-1, F-2, F-3 (до 3000 A), клещи C-4 (1000 A) и клещи C-6 (10 A), C-7 (100 A).
- коэффициента пиковых значений напряжения и тока;
- частоты от 40 Гц до 70 Гц;
- мощности: активной (Р), реактивной (Q), мощности искажений (D), полной (S);
- энергии: активной (EP), реактивной (EQ), полной (ES);
- коэффициента мощности соѕφ, tgφ;
- коэффициента гармонических потерь (К-фактор);
- до 50-й гармоники напряжения и тока;
- интергармоники напряжения и тока;
- суммарного коэффициента гармонических составляющих напряжения THD U и THD I;
- кратковременной и длительной дозы фликера P_{ST} и P_{LT} ;
- несимметрия напряжения и тока;
- перенапряжений, провалов, прерываний с возможностью сохранения осциллограмм;
- осциллограмм тока и напряжения для каждого периода усреднения.

Программное обеспечение SONEL Analysis 4:

- версия специально адаптирована под работу на планшетном компьютере;
- возможность настройки измерителя с ГОСТ 32144-2013 и формирования протокола измерений согласно ГОСТ 33073-2014;
- возможность настройки четырех точек измерения: каждой точке соответствует свой алгоритм регистрации, набор номинальных параметров, объем памяти;
- установка номинальных параметров сети: напряжение (фазное/линейное), частота, тип сети;
- установка параметров трансформаторов напряжения и/или тока;
- выбор периода усреднения;
- расписание запуска и остановки регистрации;
- установка типа токоизмерительных клещей;

- условие запуска регистрации: непосредственное, пороговое значение, согласно расписанию;
- режим измерения в реальном времени;
- широкий набор настроек представления и анализа (отчетов) данных регистрации.

Назначение и область применения:

РОМ-711 разработан для проведения регистрации и анализа параметров качества электрической энергии в сетях с номинальными частотами 50/60 Гц, согласно ГОСТ 32144-2013. Прибор соответствует ГОСТ 30804.30-2013 (класс А) и ГОСТ 30804.4.7-2013. Программное обеспечение Sonel Analysis позволяет быстро произвести настройку прибора и сформировать отчет рекомендованный ГОСТ 33073-2014. PQM-711 адаптирован для работы в сложных погодных условиях: диапазон температур от -20° до +55°С. Стабильная работа при отрицательных температурах обеспечивается за счет встроенного нагревателя. Степень защиты корпуса соответствует IP65. Анализатор может непрерывно работать, питаясь от тестируемой сети переменного напряжения. В случае отключения внешнего питания, работа измерителя поддерживается от внутренней аккумуляторной батареи.

Гарантия: 36 месяцев

Номер в Госреестре: 70102-17

Класс защиты: ГОСТ 14254-2015 (IEC 60529:2013), IP65

Температурный диапазон: -20 °C...+55 °C

Габариты ШхBх Γ : 200 \times 180 \times 77 мм (без проводов)

Масса: около 1,6 кг

Индекс: WMRUPQM711

Анализатор параметров качества электрической энергии PQM-711

Параметр	Диапазон измерений и условия	Разрешение	Предел допускаемой абсолютной погрешности измерения
Напряжение постоянного и переменного тока U _{RMS} (среднеквадратическое значение, f = 4070 Гц)	10%×U _{nom} ≤ U _{RMS} ≤ 150%×U _{nom} для U _{nom} ≥ 64 В	0,01%×U _{nom}	± 0,001 U _{nom}
	От 40,00 Гц до 70,00 Гц	,	
Частота переменного тока f	для $10\% \times U_{\text{nom}} \leq U_{\text{RMS}}$ $\leq 200\% \times U_{\text{nom}}$	0,01 Гц	± 0,01 Гц
	110111		$\pm 0,0005 \times U_{nom}$
Среднеквадратическое значение гармонических составляющих напряжения $U_{H,\ h}$ (h = 150)	От 0 до 200% U _{nom}	0,01%×U _{nom}	(U _{H, h} изм <0,01×U nom) ±0,05×U _{H, h} изм (U _{H, h} изм ≥0,01×U
			nom

Среднеквадратическое значение интергармонических составляющих напряжения $U_{C, i}$ (i = 150)	От 0 до 200% U _{nom}	0,01%×U _{nom}	$\pm 0,0005 \times U_{nom}$ $(U_{C, i} \text{ изм } < 0,01 \times U_{nom})$ $\pm 0,05 \times U_{H, h} \text{ изм}$ $(U_{C, i} \text{ изм } \ge 0,01 \times U_{nom})$
Суммарный коэффициент гармонических составляющих напряжения ТНD _U (h = 250) Суммарный коэффициент	От 0 до 100,0% (для U _{RMS} > 1%×U _{nom})	0,1%	nom ±0,05×THD _U изм
интергармонических составляющих напряжения TID_U ($i=050$)	От 0 до 100,0% (для U _{RMS} > 1%×U _{nom})	0,1%	±0,05×TID _U изм
	Без исп	ользования кл	пещей
	От 0 В до 1 В (3,6 В _{P-P}) K = 1000 A/1 В	0,01% Inom	± 0,001%×Inom
	С гибкими клещами F-1, F-2, F-3		
	От 1 А до 3000 А (~) (10000 А _{Р-Р})	0,01%×Inom	± 0,01×I _{RMS} изм ± 0,02×I _{RMS} изм (с учетом доп. погрешности от положения)
	С измерительными клещами С-4		
			HAMMUL-4
		ельными клец	цами С-4
Сила постоянного и переменного тока (среднеквадратическое значение, f = 4070 Гц) I _{RMS}	От 0,1 A до 10 A (~) От 10 A до 50 A (~) От 50 A до 200 A (~) От 200 A до 1000 A (~) От 1000 A до 1200 A (~)		$\pm (0.03 \times I_{RMS} \text{ изм} + 0.1 \text{ A})$ $\pm 0.03 \times I_{RMS} \text{ изм}$ $\pm 0.015 \times I_{RMS} \text{ изм}$ $\pm 0.0075 \times I_{RMS} \text{ изм}$ $\pm 0.005 \times I_{RMS} \text{ изм}$
тока (среднеквадратическое	ОТ 0,1 A до 10 A (~) ОТ 10 A до 50 A (~) ОТ 50 A до 200 A (~) ОТ 200 A до 1000 A (~) ОТ 1000 A до 1200 A (~) (3600 A _{P-P})		$\begin{array}{c} \pm \; (0,03 \times {\rm I_{RMS}} \; {\rm ^{изм}} \; + \\ 0,1 \; {\rm A}) \\ \\ \pm \; 0,03 \times {\rm I_{RMS}} \; {\rm ^{изм}} \\ \pm \; 0,015 \times {\rm I_{RMS}} \; {\rm ^{изм}} \\ \pm \; 0,0075 \times {\rm I_{RMS}} \; {\rm ^{изм}} \\ \pm \; 0,005 \times {\rm I_{RMS}} \; {\rm ^{изм}} \end{array}$
тока (среднеквадратическое	ОТ 0,1 A до 10 A (~) ОТ 10 A до 50 A (~) ОТ 50 A до 200 A (~) ОТ 200 A до 1000 A (~) ОТ 1000 A до 1200 A (~) (3600 A _{P-P})	0,01%×Inom	$\begin{array}{c} \pm \; (0,03 \times {\rm I_{RMS}} \; {\rm ^{изм}} \; + \\ 0,1 \; {\rm A}) \\ \\ \pm \; 0,03 \times {\rm I_{RMS}} \; {\rm ^{изм}} \\ \pm \; 0,015 \times {\rm I_{RMS}} \; {\rm ^{изм}} \\ \pm \; 0,0075 \times {\rm I_{RMS}} \; {\rm ^{изм}} \\ \pm \; 0,005 \times {\rm I_{RMS}} \; {\rm ^{изм}} \end{array}$
тока (среднеквадратическое	ОТ 0,1 A до 10 A (~) ОТ 10 A до 50 A (~) ОТ 50 A до 200 A (~) ОТ 200 A до 1000 A (~) ОТ 1000 A до 1200 A (~) (3600 A _{P-P}) С измерит ОТ 0,01 A до 0,1 A (~) ОТ 1 A до 12 A (~) (36 A _{P-P}) С измерит	0,01%×Inom ельными клец	$\pm (0,03 imes I_{RMS} imes$
тока (среднеквадратическое	ОТ 0,1 A до 10 A (~) ОТ 10 A до 50 A (~) ОТ 50 A до 200 A (~) ОТ 200 A до 1000 A (~) ОТ 1000 A до 1200 A (~) (3600 A _{P-P}) С измерит ОТ 0,01 A до 0,1 A (~) ОТ 0,1 A до 1 A (~) ОТ 1 A до 12 A (~) (36 A _{P-P})	0,01%×Inom ельными клец 0,01%×Inom	$\pm (0,03 \times I_{RMS} \text{ изм} + 0,1 \text{ A})$ $\pm 0,03 \times I_{RMS} \text{ изм}$ $\pm 0,015 \times I_{RMS} \text{ изм}$ $\pm 0,0075 \times I_{RMS} \text{ изм}$ $\pm 0,005 \times I_{RMS} \text{ изм}$
тока (среднеквадратическое	ОТ 0,1 A до 10 A (~) ОТ 10 A до 50 A (~) ОТ 50 A до 200 A (~) ОТ 200 A до 1000 A (~) ОТ 1000 A до 1200 A (~) (3600 A _{P-P}) С измерит ОТ 0,01 A до 1 A (~) ОТ 1 A до 1 2 A (~) (36 A _{P-P}) С измерит ОТ 0,01 A до 100 A (~)	0,01%×Inom ельными клец 0,01%×Inom ельными клец	$\pm (0,03 \times I_{RMS} \text{ изм} + 0,1 \text{ A})$ $\pm 0,03 \times I_{RMS} \text{ изм}$ $\pm 0,015 \times I_{RMS} \text{ изм}$ $\pm 0,0075 \times I_{RMS} \text{ изм}$ $\pm 0,005 \times I_{RMS} \text{ изм}$ $\pm 0,005 \times I_{RMS} \text{ изм}$ $\pm 0,005 \times I_{RMS} \text{ изм} + 1$ $\pm 0,025 \times I_{RMS} \text{ изм}$ $\pm 0,01 \times I_{RMS} \text{ изм}$ $\pm 0,01 \times I_{RMS} \text{ изм}$ $\pm 0,005 \times I_{RMS} \text{ изм}$ $\pm 0,005 \times I_{RMS} \text{ изм}$ $\pm 0,005 \times I_{RMS} \text{ изм}$

Среднеквадратическое значение	В зависимости от типа		±0,0015×Inom
интергармонических	используемых клещей	0,01%×Inom	(I _{C, i} <0,03×Inom)
составляющих силы тока $I_{C, i}$ (i =	(см. характеристики I	0,01,000	±0,05×I _{C, i}
050)	RMS ⁾		(I _{C. i} ≥0,03×Inom)
Суммарный коэффициент	От 0 до 100,0%		-, .
гармонических составляющих	(для I _{RMS} > 1%×Inom)	0,1%	± 0,05×THD _I изм
силы тока THD _I (h = 250)	RMS = 70 miles		
Суммарный коэффициент	0 0 100 00/		
интергармонических	От 0 до 100,0%	0,1%	± 0,05×TID _I изм
составляющих силы тока TID _I (i = 050)	(для I _{RMS} > 1%×Inom)		'
Активная мощность Р и активная	$80\% \times U_{\text{nom}} \leq U_{\text{RMS}} \leq 120\% \times U_{\text{nom}}$	Зависит от U	± 0,01 ×
энергия Е _Р	$1\% \times Inom \le I_{RMS} \le Inom$	_{nom} и Inom	× P(E _p)изм
Реактивная мощность Q и	$80\% \times U_{nom} \le U_{RMS} \le 120\% \times U_{nom}$		± 0,01 ×
реактивная энергия Е _Q	2%×Inom ≤ I _{RMS} ≤ Inom	_{nom} и Inom	× Q(E _O)изм
Полная мощность S и полная	80%×U _{nom} ≤ U _{RMS} ≤	Зависит от U	
энергия Е _ς	120%×U _{nom}	и Inom	± 0,01 × ×
5110p. 777 <u>-</u> 5	$2\% \times Inom \le I_{RMS} \le Inom$	nom " IIIOIII	S(E _S)изм
	От 0 до 1,00		
Коэффициент мощности PF	Для $50\% \times U_{\text{nom}} \leq U_{\text{RMS}}$	0,01	± 0,03
Коэффициент мощноститт	$\leq 120\% \times U_{\text{nom}}$ $10\% \times \text{Inom} \leq I_{\text{RMS}} \leq$	0,01	± 0,05
	Inom		
Активная и реактивная мощность	$80\% U_{\text{nom}} \leq U_{\text{RMS}} <$	Зависит от U	
гармоник	120% U _{nom}	_{nom} и Inom	
Тармотин	5% Inom ≤ I _{RMS} ≤ Inom	nom " " "	
	От 0 до 1,00		
Koэффициент сдвига фаз cosф	Для $50\% \times U_{\text{nom}} \leq U_{\text{RMS}}$	0,01	± 0,03
(DPF)	$\leq 120\% \times U_{\text{nom}}$ $10\% \times \text{Inom} \leq I_{\text{RMS}} \leq$	0,01	± 0,05
	Inom		
Угол сдвига фаз между	0- 100 00 +100 00	0.019	. 10
напряжением и силой тока ф _{U. I}	От -180,0° до +180,0°	0,01°	± 1°
Кратковременная доза фликера Р	От 0,20 до 10,00	0,01	± 0,05×Р _{st} изм
st	Для U_{RMS} ≥ $80\% \times U_{nom}$	0,01	= 0,05 · · · st · · · ·
Длительная доза фликера Р _{іт}	От 0,20 до 10,00	0,01	± 0,05 ×Р _{I+} изм
	Для $U_{RMS} \ge 80\% \times U_{nom}$ От -180,0° до +180,0°	0,01°	±1°
Угол сдвига фаз напряжений ф _О Коэффициент несимметрии		0,01	<u>. T</u>
напряжения по обратной U_2/U_1 и	От 0,0% до 20,00%		
нулевой последовательности U_0/U	80%×UHOM ≤ U _{RMS} ≤	0,1%	± 0,15 %
1	150%×Uном		
Угол сдвига фаз силы токов ф _І	От -180,0° до +180,0°	0,01°	± 1°
·			

Управляющие сигналы сети	От 5 до 3000 Гц	0,01 Гц	± 0,15% U _h для 13% U _h , 5% U _n для
			315% U _h
Переходные процессы (10 МГц)	±8000 B	5 B	$\pm (5\% + 25 B)$

- U_{RMS} измеренное значение напряжения постоянного и переменного тока (среднеквадратическое значение);
- I_{RMS} измеренное значение силы постоянного и переменного тока (среднеквадратическое значение);
- U_{nom} номинальное значение напряжения, установленное в анализаторе. Возможны установки напряжений из группы: 110/190 В, 115/200 В, 220/380 В, 230/400 В, 240/415 В, 400/690 В (межфазное/линейное). При использовании трансформаторов, в анализаторе возможна установка номинального напряжения (напряжения вторичной обмотки) из группы: 100 В, 110 В, 115 В, 120 В. Таким образом возможна установка номинального напряжения в диапазоне от 100 В до 690 В
- I_{nom} номинальное значение предела диапазона измерения для токовых разъемов анализатора (клещей);
- K коэффициент масштабного преобразования входных для токовых разъемов анализатора;
- h порядковый номер гармоники;
- $U_{H,\ h\ uзm}$ измеренное значение среднеквадратического значения гармонических составляющих напряжения;
- I_{H, h изм} измеренное значение среднеквадратического значения гармонических составляющих силы тока;
- THD $_{\rm U\ изm}$ измеренное значение суммарного коэффициента гармонических составляющих напряжения;
- THD_{I изм} измеренное значение суммарного коэффициента гармонических составляющих силы тока;
- $P(E_{D})_{U3M}$ измеренное значение активной мощности (активной энергии);
- $Q(E_{O}^{-})_{_{\mathsf{ИЗM}}}$ измеренное значение реактивной мощности (реактивной энергии);
- $S(E_S)_{_{\mathsf{ИЗМ}}}$ измеренное значение полной мощности (полной энергии);
- $P_{\text{st изм}}$ измеренное значение кратковременной дозы фликера;
- $P_{\text{lt изм}}$ измеренное значение длительной дозы фликера.

На данное оборудование предоставляется скидка, подробности уточняйте у менеджера. 8-800-551-11-01